16 research outputs found

    Universes inside a Λ\Lambda black hole

    Full text link
    We address the question of universes inside a Λ\Lambda black hole which is described by a spherically symmetric globally regular solution to the Einstein equations with a variable cosmological term Λμν\Lambda_{\mu\nu}, asymptotically Λgμν\Lambda g_{\mu\nu} as r→0r\to 0 with Λ\Lambda of the scale of symmetry restoration. Global structure of spacetime contains an infinite sequence of black and white holes, vacuum regular cores and asymptotically flat universes. Regular core of a Λ\Lambda white hole models the initial stages of the Universe evolution. In this model it starts from a nonsingular nonsimultaneous big bang, which is followed by a Kasner-type anisotropic expansion. Creation of a mass occurs mostly at the anisotropic stage of quick decay of the initial vacuum energy. We estimate also the probability of quantum birth of baby universes inside a Λ\Lambda black hole due to quantum instability of the de Sitter vacuum.Comment: REVTEX, 9 pages, 13 figures. To appear in Physics Letters

    Anisotropic dark energy stars

    Full text link
    A model of compact object coupled to inhomogeneous anisotropic dark energy is studied. It is assumed a variable dark energy that suffers a phase transition at a critical density. The anisotropic Lambda-Tolman-Oppenheimer-Volkoff equations are integrated to know the structure of these objects. The anisotropy is concentrated on a thin shell where the phase transition takes place, while the rest of the star remains isotropic. The family of solutions obtained depends on the coupling parameter between the dark energy and the fermion matter. The solutions share several features in common with the gravastar model. There is a critical coupling parameter that gives non-singular black hole solutions. The mass-radius relations are studied as well as the internal structure of the compact objects. The hydrodynamic stability of the models is analyzed using a standard test from the mass-radius relation. For each permissible value of the coupling parameter there is a maximum mass, so the existence of black holes is unavoidable within this model.Comment: 12 pages, 6 figures, final manuscript, Accepted for publication in Astrophysics & Space Scienc

    Scenario of Accelerating Universe from the Phenomenological \Lambda- Models

    Full text link
    Dark matter, the major component of the matter content of the Universe, played a significant role at early stages during structure formation. But at present the Universe is dark energy dominated as well as accelerating. Here, the presence of dark energy has been established by including a time-dependent Λ\Lambda term in the Einstein's field equations. This model is compatible with the idea of an accelerating Universe so far as the value of the deceleration parameter is concerned. Possibility of a change in sign of the deceleration parameter is also discussed. The impact of considering the speed of light as variable in the field equations has also been investigated by using a well known time-dependent Λ\Lambda model.Comment: Latex, 9 pages, Major change

    Some peculiarities of motion of neutral and charged test particles in the field of a spherically symmetric charged object in General Relativity

    Full text link
    We propose the method of investigation of radial motions for charged and neutral test particles in the Reissner-Nordstr\"{o}m field by means of mass potential. In this context we analyze special features of interaction of charges and their motions in General Relativity and construct the radial motion classification. For test particles and a central source with charges qq and QQ, respectively, the conditions of attraction (when qQ>0qQ>0) and repulsion (when qQ<0qQ<0) are obtained. The conditions of motionless test particle states with respect to the central source are investigated and, in addition, stability conditions for such static equilibrium states are found. It is shown that stable states are possible only for the bound states of weakly charged particles in the field of a naked singularity. Frequencies of small oscillations of test particles near their equilibrium positions are also found.Comment: 15 pages, 9 figure

    Regular black holes and black universes

    Get PDF
    We give a comparative description of different types of regular static, spherically symmetric black holes (BHs) and discuss in more detail their particular type, which we suggest to call black universes. The latter have a Schwarzschild-like causal structure, but inside the horizon there is an expanding Kantowski-Sachs universe and a de Sitter infinity instead of a singularity. Thus a hypothetic BH explorer gets a chance to survive. Solutions of this kind are naturally obtained if one considers static, spherically symmetric distributions of various (but not all) kinds of phantom matter whose existence is favoured by cosmological observations. It also looks possible that our Universe has originated from phantom-dominated collapse in another universe and underwent isotropization after crossing the horizon. An explicit example of a black-universe solution with positive Schwarzschild mass is discussed.Comment: 13 pages, 1 figure. 6 referenses and some discussion added, misprints correcte

    On the dissipative non-minimal braneworld inflation

    Full text link
    We study the effects of the non-minimal coupling on the dissipative dynamics of the warm inflation in a braneworld setup, where the inflaton field is non-minimally coupled to induced gravity on the warped DGP brane. We study with details the effects of the non-minimal coupling and dissipation on the inflationary dynamics on the normal DGP branch of this scenario in the high-dissipation and high-energy regime. We show that incorporation of the non-minimal coupling in this setup decreases the number of e-folds relative to the minimal case. We also compare our model parameters with recent observational data.Comment: 32 pages, 6 figures. arXiv admin note: substantial text overlap with arXiv:1001.044

    Gravitomagnetic Effects in the Propagation of Electromagnetic Waves in Variable Gravitational Fields of Arbitrary-Moving and Spinning Bodies

    Get PDF
    Propagation of light in the gravitational field of self-gravitating spinning bodies moving with arbitrary velocities is discussed. The gravitational field is assumed to be "weak" everywhere. Equations of motion of a light ray are solved in the first post-Minkowskian approximation that is linear with respect to the universal gravitational constant GG. We do not restrict ourselves with the approximation of gravitational lens so that the solution of light geodesics is applicable for arbitrary locations of source of light and observer. This formalism is applied for studying corrections to the Shapiro time delay in binary pulsars caused by the rotation of pulsar and its companion. We also derive the correction to the light deflection angle caused by rotation of gravitating bodies in the solar system (Sun, planets) or a gravitational lens. The gravitational shift of frequency due to the combined translational and rotational motions of light-ray-deflecting bodies is analyzed as well. We give a general derivation of the formula describing the relativistic rotation of the plane of polarization of electromagnetic waves (Skrotskii effect). This formula is valid for arbitrary translational and rotational motion of gravitating bodies and greatly extends the results of previous researchers. Finally, we discuss the Skrotskii effect for gravitational waves emitted by localized sources such as a binary system. The theoretical results of this paper can be applied for studying various relativistic effects in microarcsecond space astrometry and developing corresponding algorithms for data processing in space astrometric missions such as FAME, SIM, and GAIA.Comment: 36 pages, 1 figure, submitted to Phys. Rev.

    Energy Contents of Some Well-Known Solutions in Teleparallel Gravity

    Full text link
    In the context of teleparallel equivalent to General Relativity, we study energy and its relevant quantities for some well-known black hole solutions. For this purpose, we use the Hamiltonian approach which gives reasonable and interesting results. We find that our results of energy exactly coincide with several prescriptions in General Relativity. This supports the claim that different energy-momentum prescriptions can give identical results for a given spacetime. We also evaluate energy-momentum flux of these solutions.Comment: 16 pages, accepted for publication in Astrophys. Space Sc

    Phenomenology of the Lense-Thirring effect in the Solar System

    Full text link
    Recent years have seen increasing efforts to directly measure some aspects of the general relativistic gravitomagnetic interaction in several astronomical scenarios in the solar system. After briefly overviewing the concept of gravitomagnetism from a theoretical point of view, we review the performed or proposed attempts to detect the Lense-Thirring effect affecting the orbital motions of natural and artificial bodies in the gravitational fields of the Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of the impact of several sources of systematic uncertainties of dynamical origin to realistically elucidate the present and future perspectives in directly measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in Astrophysics and Space Science (ApSS). Some uncited references in the text now correctly quoted. One reference added. A footnote adde
    corecore